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A B S T R A C T

Gentiana lutea rhizomes are known for their bitter tasting properties conferred by its unique biochemical content. 
They are currently of interest in phytotherapy, animal nutrition, food processing, cosmetic applications and 
agroecology. In this study, a NIRS, fluorescence and HS-SPME-GCMS dataset of 55 rhizomes from four different 
French mountains (Alpes, Jura, Massif Central and Pyrénées) was collected with the aim of assessing the vari
ability of Gentiana lutea composition at different scales. The feasibility of data fusion strategies was demonstrated 
to be effective in distinguishing the geographical origin of Gentiana lutea roots over a wide area. The results 
suggest that data fusion methods have the potential to be more effective in the quality of separation of studied 
sites of Gentiana lutea roots than individual decisions obtained from individual analytical tools. However, to 
guarantee the geographical origin of Gentiana lutea roots within a single massif using these techniques, envi
ronmental factors must be considered.

1. Introduction

The yellow gentian, Gentiana Lutea, grows annually during the spring 
season. It is native to the mountains of central and southern Europe, 
preferring calcareous soils, and grows naturally on uncultivated land in 
France, Spain and the Balkans. The plant is protected in Europe and is 
mainly cultivated in Germany and France (European Medicines Agency 
(EMA), 2009). A sustainable management program of Gentiana Lutea is 
being carried out in Auvergne (France) in order to safeguard Gentiana 
lutea, develop and promote Gentiana lutea and its products. Gentiana 
lutea is spread in the mountains of seed dispersal at the end of the 
flowering season and by vegetative dispersal through its underground 
rhizomes during the dormant season (Ando et al., 2007; Arberas et al., 
1995; Toriumi et al., 2003). Gentiana Lutea rhizomes accumulate 

primary and secondary metabolites whose concentrations are influenced 
by environmental and developmental factors (Coelho et al., 2022; 
Marković et al., 2019). Among them, seco-iridoids are the most impor
tant secondary metabolite components of Gentiana lutea rhizomes, 
reaching 6 % to 12 % of the rhizome dry weight, which contributes to its 
attractiveness for industrial transformations in the field of food, bever
ages, pharmaceuticals, cosmetics and phytopharmaceuticals (Berthon 
et al., 2023; Biehlmann et al., 2020; Coelho et al., 2023; Mirzaee et al., 
2017; Mustafa et al., 2015; Ponticelli et al., 2023). Recent analytical 
developments have revealed the complex composition of rhizomes in 
terms of compounds volatile (Aberham et al., 2011; Ando et al., 2007; 
Gibitz-Eisath et al., 2022; Xu et al., 2017). Novel phytochemical com
pounds with potential bioactivity belonging to the family of iridoids, 
terpenes, xanthones, flavones and their glycosylated forms have been 
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discovered on Gentiana Lutea rhizomes for pharmaceutical purposes 
(Aberham et al., 2011; Enders et al., 2021; Toriumi et al., 2003). Some 
studies on foods flavoured with gentian also indicate putative chemical 
biomarkers (amarogentine, loganic acid, barium, aluminium, 2- 
methoxy-sec-butylpyrazine, phenyl acetate) of mountain origin in the 
composition of these gentian-based products.(Biehlmann et al., 2020; 
Coelho et al., 2023).

Spectroscopic techniques using fluorescence emission and infrared 
absorption combined with chemometrics offered the possibility to study 
the chemical composition of botanical plants with unsupervised vision 
(Mazina et al., 2015; Obeidat et al., 2007; Y. Wang et al., 2018). In most 
cases, chemometric tools using multivariate analysis are used for mo
lecular profiling and authentication purposes (Abraham & Kellogg, 
2021). Spectral analysis of different botanical species of Gentiana in the 
near-infrared (NIR: 1100–2500 nm) and mid-infrared (MIR: 
2500–25,000 nm) regions allow the assessment of species differences, 
geographical origin and chemical composition of Gentiana lutea rhi
zomes. (Coelho et al., 2022; Shen et al., 2020).

Even if these analytical methods seemed to be useful for classifica
tion and predictive abilities of botanical origin at different scale levels, 
some inaccuracies in spatial predictive models are often mentioned due 
to multiple environmental factors affecting the growth of herbs. More
over, some genetic variations and historical biogeography have been 
shown to modify the phenotypic characteristics and chemical compo
sition of Gentiana lutea populations in a wide area of occurrence 
(González-López et al., 2014; Veiga et al., 2016). Improving this accu
racy could be done in two different ways: (i) selecting appropriate 
models carried out on the most relevant samples (Coelho et al., 2022; J. 
Li, 2019), or combining multispectral analysis with a data fusion 
approach on multi-source datasets (Y. Li et al., 2018; Pérez-Ràfols et al., 
2023; Ríos-Reina et al., 2019; Q.-Q. Wang et al., 2019; Y. Zhang & Wang, 
2023). Such an analytical strategy has already been applied to assess the 
geographical origin of aerial and subterranean parts of Gentiana rigescens 
(Shen et al., 2019) and to our knowledge, never for Gentiana lutea. 
Recent studies have shown that data fusion, coupled with chemometric 
approaches, can effectively assess and classify food quality and identify 
geographical origin. (Drivelos et al., 2014; Márquez et al., 2016; Otta
vian et al., 2014; Robert et al., 2021; Schwolow et al., 2019).

To the best of our knowledge, the combination of chromatographic, 
fluorescence and spectroscopy techniques by data fusion on the explo
ration of the geographical origin of gentian rhizomes has not been 
described. Data fusion is an approach where the data from multiple 
sources of different nature are combined and analyzed jointly in order to 
take advantage of their features and improve the representation of in
formation compared to the respective sources separately (Castanedo, 
2013). Chromatographic, fluorescence and spectroscopy data can be 
fused using a mid-level data fusion approach. Mid-level data fusion is a 
systematic approach comprised of intermediate steps between the raw 
data and the final model (Mafata et al., 2022). Many chemometric tools 
can be introduced as data projection linear methods (Brereton, 2003), 
which compress raw data, uncover hidden correlations, and separate 
useful information from noise. Projection methods provide a very intu
itive and visual approach for data analysis and Principal Component 
Analysis (PCA) is the main tool for this purpose. The most commonly 
used unsupervised data fusion methods are principal component anal
ysis (PCA) and multiple factor analysis (MFA) (Mafata et al., 2022). The 
subspace identified by PCA constitutes the most faithful dimensional 
approximation of the original data. This allows compression of the data 
dimensionality and at the same time a minimal loss of information 
(Cordella, 2012). PCA was used to explore chemical profiles in more 
depth and to determine the existence of specific groups. On the other 
hand, multiple factor analysis (MFA) is a technique for multivariate data 
analysis designed to simplify and present intricate data tables wherein 
individuals are characterized by multiple sets of variables, whether 
quantitative or qualitative, grouped together (Husson et al., 2017). It 
considers the influence of all active variable groups when assessing 

distances between individuals. While the number and type of variables 
can vary across groups, it is crucial that variables within a specific group 
share the same nature (Abdi & Williams, 2010). In the MFA framework, 
the simultaneous consideration of multiple variable sets requires 
balancing influences from each set. Consequently, a weighting process is 
applied to variables during the analysis. Variables within the same group 
are normalized using a common weighting value, which may vary across 
groups. MFA has diverse applications across fields, particularly in sce
narios where variables are organized into groups (Pagès, 2002). MFA, 
where statistical techniques are used to integrate and analyze data from 
multiple sources or types to uncover underlying relationships and pat
terns, allows to gain a more comprehensive understanding of complex 
datasets by leveraging the complementary information provided by 
different data sources or variables (Cocchi & Reggio, 2019; Mafata et al., 
2022). Moreover, this type of fusion enables an easy interpretation of the 
results, since the contribution of each individual block can be visualized 
(Ríos-Reina et al., 2019).

In this study, a data set of NIR-infrared spectra, excitation-emission 
matrices of fluorescence and HS-SPME-GCMS analysis of 55 rhizomes 
from four different French mountains (Alpes, Jura, Massif Central and 
Pyrénées) was collected with the aim of evaluating the variability of the 
composition of Gentiana lutea at different scales. In fact, Mustafa et al. 
(2015) already show differences in different populations of Gentiana 
lutea rhizomes. Moreover, in a previous study, Coelho et al. (2022)
already show differences among the 55 rhizomes sampled in the four 
different French mountains (Alpes, Jura, Massif Central and Pyrénées) 
that the seco-iridoids contents ranged between 6 and 12 % in dry weight 
according to the geographical origin and plant-growing conditions.

The current work aims to compare the feature of individual of each of 
the analytical techniques (NIR-infrared spectroscopy, excitation- 
emission matrices of fluorescence and HS-SPME-GCMS analysis) of 
those obtained by combining three analytical techniques to go deeper in 
the characterization of Gentiana lutea roots. This, in this study, each 
analytical technique (NIR-infrared spectroscopy, fluorescence 
excitation-emission matrices and HS-SPME-GCMS analysis) was first 
analyzed individually to evaluate the capabilities of each analytical 
technique for the characterization of Gentiana lutea roots. These tech
niques provided complementary information that allowed a mid-level 
data fusion approach thus demonstrating the potential and benefits of 
data fusion. By adopting such a strategy, we hope to gain a more holistic 
view of the geographical effects on the composition of Gentiana lutea 
rhizomes, and to assess the extent to which a mountainous environment 
can confer chemical typicity on the plant.

2. Material and methods

2.1. Gentian roots sample

The information regarding the sampling of the 55 Gentiana lutea 
rhizomes were previously reported in Coelho et al. (2022). In summary, 
a total of 55 Gentiana lutea roots were sampled entirely in July 2018 
from ten different sites in four French mountains (Massif Central, Jura, 
Pyrénées, and Alpes). In each site, a minimum of five gentians were 
uprooted with an “evil fork” to consider the biochemical variability of 
the sampling site. Two of these sites were two gentian cultivars (CUL) (n 
= 10) and the eight others were wild sites (WIL) (n = 45). Table 1
summarizes the number of sampled gentian roots for each site in four 
French mountains used in this study. All roots were cleaned from their 
residual soil, manually sliced in 1–2 cm pieces, dried at 40 ◦C for two 
days and lastly ground to a fine powder and stored at 4 ◦C until physico- 
chemical analyses.

2.2. Chromatographic and spectroscopic analysis

2.2.1. Analysis of volatile compounds by HS-SPME-GCMS
Whatever the sample, the extraction of volatile compounds was done 
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by headspace solid-phase microextraction and analyzed by GC–MS (HS- 
SPME-GCMS).

This analysis was carried out using a three-phase fiber (divinylben
zene (DVB) / carboxen (CAR) / polydimethylsiloxane (PDMS), 50/30 
μm, Supelco). Before use, the fiber was conditioned in accordance with 
the manufacturer’s recommendations. A preliminary study was done to 
choose the best extraction parameters (Biehlmann et al., 2020). The 
selected extraction conditions were the following: 1 g of powder in a 20 
mL vial was incubated in a water bath at 40 ◦C for 15 min. Then the fiber 
was exposed to the sample headspace for 15 min at 40 ◦C and was 
desorbed for 10 min into GC–MS inlet. The analyses were done in 
technical triplicate.

A mass spectrometer (Agilent 5975C-VLMSD, electron ionization at 
70 eV) paired with an Agilent 7890 A gas chromatograph fitted with a 
split/splitless injector was used to perform this analysis. The chro
matograph was equipped with a capillary column DB5ms of 30 m ×
0.32 mm (J&W Scientific). Film thickness was 0.50 μm. Helium was 
used as carrier gas at a rate of 1.5 mL.min− 1 (average velocity of 44 cm. 
s− 1). The temperature of the oven was increased from 40 ◦C to 240 ◦C at 
4 ◦C.min− 1 and maintained 5 min at 240 ◦C. The injection temperature 
was 240 ◦C and was done in splitless mode. The purge flow to split vent 
was 25 mL.min− 1 at 2 min.

The mass spectrometer was used in scan mode from m/z 29 to 400. 
The corresponding volatile compounds were tentatively identified by 
matching their spectral fragmentation with those provided by the mass 
spectral library of the National Institute of Standards and Technology 
(NIST) and the Wiley Registry (WILEY). In addition, for each volatile 
compound obtained (76 volatile compounds), linear retention index 
(LRI) was calculated using the retention times of a standard mixture of 
C8-C19 saturated alkanes (Sigma Aldrich) and compared with the LRI 
values published in the literature of columns with the same polarity. 
Moreover, Extract Ion Chromatograms (EIC) from total ion chromato
grams (TIC) were used for the analysis. In an extracted-ion chromato
gram (EIC), one or more m/z values representing one or more analytes of 

interest are extracted from the entire data set of total ions chromato
grams (TIC). In order to identify gentian robust markers, volatile com
pounds systematically present in at least two of the three technical 
replicates and in the five biological replicates for at least one of the two 
geographical sites has been selected for the chemometric analysis. If a 
compound was absent in one of the five biological samples by 
geographical site, it was discarded for the chemometric analysis. Finally, 
ten major volatile compounds have been selected.

2.2.2. Fluorescence analysis
The sample preparation for fluorescence analysis was adapted from a 

previous published methodology (Biehlmann et al., 2020; Coelho et al., 
2022). Gentiana lutea rhizomes powders were extracted in methanol 
(weight/volume) ratio of (10 g/1 L) during 12 h at 60 ◦C under heat 
reflux. Methanolic solutions were filtered with 0.45 μm nylon filters and 
diluted twenty times in ultrapure water prior being analyzed in a Horiba 
Aqualog® spectrofluorimiter using 1 cm-pathlength quartz cell. Exci
tation Emission Matrices (EEMs) were acquired in the range of excita
tion wavelengths from 600 to 225 nm (3 nm steps) and emission 
wavelengths from 211 to 617 nm (3.34 nm steps). All EEMs were cor
rected from inner filter effects and Rayleigh scattering and normalized 
to a 1 ppm quinine sulfate reference solution. PARAllel FACtor analysis 
of the 55 corrected EEMs was carried, using the drEEM tutorial (Murphy 
et al., 2013) on a Matlab console, in order to build a PARAFAC model 
fitting the entire variability of EEM datasets. The number of PARAFAC 
components was optimized by the CORe CONsistency DIAgnostic test 
and PARAFAC model was split half validated. After model validation, 
Fmax values for each PARAFAC components are enabled to describe the 
original EEM datasets. For this study, four Fmax values (named from 
Fmax1 to Fmax 4) and Fmax4/Fmax1 ratio were considered (five 
variables).

2.2.3. Near infra-red spectroscopy (NIRS)
Absorbance spectra were obtained directly on the gentian powder 

without sample pre-treatment using NIR spectrophotometer (Field Spec 
4 Standard - Res, Bonsai Advanced Technologies, Madrid, Spain) 
equipped with optic fiber (diameter 600 μm; length 15 cm). The soft
ware used was RS3 by ASD Inc. Measurement was performed in reflec
tance mode between 350 and 2500 nm (2151 variables). Ten scans were 
recorded at room temperature and were averaged to give one spectrum. 
The spectra were recorded at intervals of 1 nm. To minimize sample 
error, all samples were analyzed five times. All spectra were considered 
in the data analysis.

2.3. Chemometric analysis

As data came from a multiplatform analysis of the same samples 
(NIRS, GC–MS, and Fluorescence), a multiblock dataset was built in 
which the data were not simply multivariate but also multimodal, i.e. 
multivariate and multisource. In this case, analytical profiles are 
multivariate (as the responses are acquired at several wavenumbers) and 
the modes are represented by the different analytical techniques. Mul
tiblock data analysis accomplishes tasks similar to those undertaken 
with single-block chemometric techniques such as PCA, but they can 
achieve an enhanced understanding of the common and the distinct 
information present in the data acquired from different platforms 
(Mishra et al., 2021). To enhance the interpretation, we conducted a 
multiple factor analysis (MFA).

The preparation of near-infrared (NIR) spectral data through pre- 
processing has become a fundamental aspect of chemometrics model
ling. The primary aim of this pre-processing is to eliminate inherent 
physical phenomena within the spectra, thereby enhancing the perfor
mance of subsequent multivariate regression, classification models, or 
exploratory analyses (Rinnan & Engelsen, 2009). Data from the spectral 
dataset were first pre-processed using of Savitky-Golay filter (window 
11, polynomial order 2, 2nd derivative). The Savitzky-Golay filter is a 

Table 1 
: Characteristic of Gentiana Lutea roots samples collected from the four French 
mountains. GPS represent the Global Positioning Unit, n represent the sample 
size of Gentiana Lutea roots, WIL/CUL represent the wild vs cultivated growing 
practices (Biehlmann et al., 2020).

Geographical 
origin

Sites GPS 
coordinates

Samples 
size (n)

Growing 
practices

Massif Central A: Fraux N: 
45◦02.971′ 
E: 2◦52.45’

8 WIL

B: Liorangues N: 45◦0.571′ 
E: 3◦38.723’

5 CUL

C: Malbo N: 
44◦58.709′ 
E: 2◦45.921’

5 WIL

D: Nasbinals N: 
44◦40.736′ 
E: 3◦02.397’

5 WIL

E: Gelles N: 45◦45.49′ 
E: 2◦44.970’

5 CUL

F: Pégrol N: 
45◦36.586′ 
E: 3◦51.645’

5 WIL

G: Picherande N: 
45◦28.512′ 
E: 2◦50.89′

5 WIL

Jura H: La Chapelle 
des Bois

N: 
46◦37.481′ 
E: 6◦8.5’

5 WIL

Pyrénées I: Bagnères de 
Luchon

N: 
42◦44.430′ 
E: 0◦38.946’

6 WIL

Alpes J: Samoens N: 
46◦12.477′ 
E: 6◦28.920’

6 WIL
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digital signal processing technique used for smoothing and differentia
tion of data. It is particularly useful for reducing noise and extracting 
trends from signals. When applied to near-infrared (NIR) data, the 
Savitzky-Golay filter can help enhance the signal by removing unwanted 
fluctuations or noise.

Data analyses were carried out using the RStudio 2023.09.1 and R- 
4.2.1 (R Core Team, 2018), and specific packages: “rstatix” 
(Kassambara, 2024), “FactoMineR” (Lê et al., 2008). “rstatix” was used 
for ANOVA calculation, “FactoMineR” and “factoextra” were used for 
PCA and MFA. Quasar 1.9.0 was used for radviz plots for fluorescence 
data, preprocessing of NIR spectra and PCA on these data (part 1) 
(Demšar et al., 2013; He et al., 2021; Toplak et al., 2021) (Demšar et al., 
2013; He et al., 2021; Toplak et al., 2021).

3. Results and discussion

3.1. Study of variability within a massif: The massif central (MC)

The first phase of our investigation focused on the variation between 
samples within a specific geographical unit, namely the Massif Central. 
This massif was selected for the study due to the availability of a 
considerable number of sites, which provided a substantial amount of 
data for comparison with other massifs. This approach was chosen to 
understand in depth the variability of the data generated by three 
analytical techniques: Fluorescence, NIRS and HS-SPME-GCMS. This 
step serves as a basic exploration aimed at elucidating the intricacies of 
variability in the designated region before proceeding with further an
alyses between geographical areas.

Fig. 1A shows an example of the EEM fluorescence obtained for the 
wild site A with the Fmax obtained. With an excitation wavelength of 
250 nm, two PARAFAC components named Fmax 1 and Fmax 4 showed 
a maximum emission at 350 nm and 450 nm respectively. With an 
excitation wavelength of 300 nm and 350 nm, two other PARAFAC 
components, Fmax 2 and Fmax 3, respectively, showed a maximum 
emission at 450 nm. The EEM fluorescence was quantitatively separated 
into these four fluorescence components. All collected Fmax were 
plotted using Radial Coordinate Visualization (RadViz) and are shown in 
Fig. 1B. RadViz is a multivariate data visualization algorithm that draws 
each dimension (variable) uniformly around the circumference of a 
circle, and then draws points inside the circle in such a way that the 
point normalizes its values on the axes from the center to each arc. This 
mechanism makes it possible to represent as many dimensions as fit on a 
circle, greatly increasing the dimensionality of the visualization 
(Hoffman et al., 1999). No clear clusters were observed. The five wild 
area samples (A, C, D, F, G) are scattered and overlapping. To confirm 
this descriptive result, hypothesis tests (Kruskal-Wallis non-parametric 
test) were performed on the five variables. No significant difference 
was observed between the areas at 5 % risk. Fig. 1C shows the results of 
the Fmax 4/Fmax 1 ratio. The R-squared estimate corresponds to the 
percentage of variance in the dependent variable (Fmax 4/Fmax 1 ratio) 
explained by the independent variable (site). A value of 0.18 is obtained 
for the R-square estimate. The interpretation values commonly used in 
the literature are 0.01 < 0.06 (small effect), 0.06 < 0.14 (moderate ef
fect) and > 0.14 (large effect) (Cohen, 1992; Kotrlik & Williams, 2003; 
Tomczak & Tomczak, 2014). In our study, a large effect is obtained, 
which means that the observation of no differences between sites must 
be taken with caution because of the small sample size (five per site).

NIRS of 25 samples (5 sites × 5 replicates) were collected. The raw 
spectral data are shown in Fig. 2A. The original spectra showed similar 
trends. After pre-processing of the spectral data set with a cut-off be
tween 1822 and 1839 nm and an edge cut at 1000 nm and 2400 nm and 
application of a Savitzky-Golay filter, a Principal Component Analysis 
(PCA) was performed to provide a more accurate interpretation of the 
relationships between observations and variables. Fig. 2B corresponds to 
the scores plot in plan Dim 1-Dim 2 (representing 50 % and 15 % of the 
total variance, respectively), illustrating the differences between sites: A 

and F on the left, C and D on the right. Fig. 2C corresponds to the loading 
plot on Dim 1 and shows obvious high absorption bands at 1450 nm and 
1930 nm. The first region (1450 nm) combines the first overtone of the 
O–H stretching vibrations (H2O water) and the R-OH stretching vi
brations. The second region (1930 nm), as a fingerprint region, com
bines the second overtone of C––O stretching vibrations and 
combination bands of O–H stretching vibrations. These peaks are 
related to the absorption of water, cellulose and sugars. (Cevoli et al., 
2024; Y. Li et al., 2018; Ozaki et al., 2006).

The same 25 samples were analyzed by HS-SPME-GCMS. An example 
of the chromatogram obtained is shown in Fig. 3A. The components 
identified by HS-SPME-GCMS showed a remarkable chemical diversity 
belonging to different classes of compounds. The main volatile compo
nents were found in the first 20 min of the chromatogram. The top ten 
molecules were identified using the Extracted-Ion Chromatogram (EIC) 
and were mainly aldehydes and terpenes (Fig. 3A and Table ST1). This 
is in good agreement with literature (Biehlmann et al., 2020; Mustafa 
et al., 2016). Using these HS-SPME-GCMS-EIC results, an MFA was 
performed to show how the major volatile compounds contribute most 
to explaining the variations in the dataset (Fig. 3B). For a given site, the 
square corresponds to the center of gravity of the partial points of the 
individual. The sites with similar profiles are close to each other on the 
factor map. The first axis, which explains 62.9 % of the variance, is 
mainly between sites C, D (positive values) and sites A, F, G (negative 
values). The second axis, which explains 17 % of the variance, provides 
no additional information. By using only the main volatile compounds, 
we have chosen to deprive ourselves of the global information obtained 
from the whole signal. In order to obtain a more accurate interpretation 
of the relationships between observations and variables, and between 
the variables themselves, we therefore decided to carry out a second 
analysis, this time using the full chromatograms (Total Ion Current 
chromatogram TIC) to see if the response was the same. A Principal 
Component Analysis (PCA) was performed and is shown in Fig. 3C. The 
first two dimensions accounted for 46.3 % of the total variance. The 
quality of the representation of the variables on the factor map, called 
cos2 (square cosine), was indicated by a colour gradient. A high cos2 

(close to 1) indicated a good representation of the principal component. 
Different groups could be observed from the Dim1-Dim2 plot. Dim1 
modelled the difference between sites C, D, A (negative values) and sites 
F and G (positive values). Dim2 modelled the difference between site A 
(positive values) and sites D and C (negative values). This gives us 3 
different groups of individuals: A, F-G and C–D. The main feature 
responsible for the difference between the sites was the presence of 
different volatile components. The retention times (4.76 Hexanal CAS 
N◦ [66–25-1] and 2.81 Pentanal CAS N◦ [110–62-3]) represented the 
site C and D. The retention times (14.97 1-(2,4-Dimethyl-furan-3-yl)- 
ethanone 61 CAS N◦ [032933–07-6], 1.82 Acetic acid CAS N◦ [64–19-7], 
1.11 unknown molecule, 6.96 Allyl Isothiocyanate CAS N◦ [57–06-7]) 
represented the site A and the retention times (11.97 Nonane, 2,6- 
dimethyl- CAS N◦ [17302–28-2], 11.63 unknown molecule, 6.475 Oc
tane 4-methyl- CAS N◦ [2216-34-4], 13.37 Undecane 4,6-dimethyl- CAS 
N◦ [17312–82-2], 9.87 Nonane, 2-methyl- CAS N◦ [871–83-0], 11.83 
Nonane, 2,5-dimethyl- CAS N◦ [017302–27-1], 15.06 and 11.16 are 
unknown molecule) represented the site F and G. According to these 
results, for this study the discrimination between sites is more repre
sentative when working with Total Ion Current (TIC) chromatogram 
data than with Extracted Ion Chromatogram (EIC) data. This clearly 
shows that compounds other than the main volatiles are involved in the 
discrimination of samples. These results confirm the work of Reyrolle 
et al. on volatile fingerprints: non-targeted analysis improves the ability 
to detect unexpected compounds. (Reyrolle et al., 2022, 2023).

Each of the individual techniques used consecutively to analyze the 
same sample (SPME-GCMS, fluorescence, NIRS) provided information 
about the samples and made it possible to identify, with different levels 
of precision, which samples were similar and which were different. The 
fusion of all these data from complementary techniques can be a 
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Fig. 1. A) Locations of the main EEM peaks and fluorescence indices obtained for the wild sites A of massif central, B) Radviz plot for Excitation Emission Matrices 
(EEMs) samples of wild sites from massif central: in blue site A, in red site C, in green site D, in orange site F, and in yellow site G, C) Violin plots of Fmax1/Fmax4 
ratios for the five wild sites of massif central labelled A, C, D, F, G according to Kruskal-Wallis tests. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.)
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Fig. 2. A) NIRS Absorbance spectra of Gentiana lutea collected from all wild sites of massif central labelled A, C, D, F, G. B) PCA scores plot on Dim1-Dim2 plan 
obtained from NIRS Absorbance spectra of Gentiana lutea collected from all wild sites of massif central labelled A (in blue), C (in red), D (in green), F (in orange), G (in 
yellow). C) PCA loadings plot on Dim 1 obtained from NIRS Absorbance spectra of Gentiana lutea collected from all wild sites of massif central. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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powerful tool to obtain more reliable results, providing additional in
formation useful for a more precise understanding of the samples 
(Borràs et al., 2015). The purpose of using fusion strategies is to fully 
exploit the benefits of complementary information and overcome the 
shortcomings of individual techniques for exploration the geographical 
origin of gentian rhizomes. As shown in Fig. 4A, the first factor (Dim 1, 
24 %) was highly related to NIRS data, to GCMS data and location as 
complementary data. The second factor (Dim 2, 18.4 %) was highly 
related to GCMS data and location as additional data. The contribution 
of NIRS data is the least useful group of variables for discriminating 
between samples on MFA Dim 2. The Fluo data point is in the middle of 
the map, this parameter contributes as much to Dim 1 as Dim 2, but at a 
lower level than the other two. Fig. 4B shows the score plot with 95 % 
confidence ellipses. It can be observed that there is a clear separation 
between the individual sites A, F, G and the merged group C and D. 
Fig. 4C shows each site considered by each group (Fluo, GCMS, NIRS) 
and its barycentre. For a given site, there are as many subpoints as there 
are groups of variables. The subpoints are given the colours used in the 
group plots. The red line represents how it is seen in terms of the “fluo” 
variable only. The green line shows how it is seen in relation to the 
“GCMS” variable only. This graph allows to see how the different groups 
influence the position of a given point.

These results showed that data fusion of HS-SPME-GCMS data, NIRS 
spectra and excitation-emission matrices of fluorescence could 
discriminate Gentiana lutea samples from different sites of the Massif 
Central, but this discrimination has its limitation because it is not 
possible to discriminate the geographical origin of sites C and D. This 
result is consistent with the literature (Shen et al., 2019) where the 
authors state that the Partial Least Squares Discriminant Analysis (PLS- 
DA) model could efficiently discriminate Gentiana rigescens from 
different geographical origins, but they could not be accurately deter
mined for some samples. There are several possible explanations: (i) 
temperature, water and altitude factors are worth evaluating to sys
tematically control plant quality (Mazina et al., 2015; Shen et al., 2019), 
(ii) chemical profiles of Gentiana rigescens were influenced by latitudinal 

gradients of production areas (Shen et al., 2019). We can assume that 
this is also true for Gentiana lutea, (iii) the environmental factors (ge
ography, climate and soil) influence the content of bioactive compounds 
in Gentiana plants (J. Zhang et al., 2020).

To validate these conclusions, the experimental design was 
completed by adding the cultivated sites of the Massif Central, labelled B 
and E, to the wild sites previously used. The score plot of MFA with 95 % 
confidence ellipses is shown in Fig. 5. It can be seen that there is a clear 
separation between the two cultivated areas labelled B and E, and a clear 
separation between the wild areas A, F, G as before. On the other hand, 
samples C, D, E form a single group, which means that with the infor
mation available to us it is not possible to identify the origin of these 
three samples. As shown in Fig. S1, the samples from sites A, B, F and G 
are located in mountainous areas, while those from sites E and D are 
located in plains. This confirms that environmental factors (climate, 
altitude and soil type) must be taken into account to allow a certified 
geographical origin of gentian in a restricted area. Future work is needed 
on the effects of environmental factors and their interactions on the 
quality of Gentiana lutea, which could contribute to good cultivation 
practices and the conservation of wild populations.

3.2. Variability between massifs: Jura, Pyrénées, Alpes

In a limited area (only the Massif Central), according to our mid-level 
data fusion conditions, the geographical exploration of gentian roots is 
not certain. In order to validate whether this method is nevertheless 
promising, a new experimental design was studied on a broader scale, 
while maintaining the same objective: the exploration of the 
geographical origin of gentian rhizomes coming from different French 
massifs using mid-level data fusion of HS-SPME-GCMS data, NIRS 
spectra and excitation-emission matrices of fluorescence. The same 
methodology as described above was used. It included only samples 
representing the massifs of Jura, Alpes and Pyrénées. Due to the 
disproportionate number of gentian root sampling sites between the 
Massif Central and the other French massifs, the Massif Central was 

Fig. 2. (continued).
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Fig. 3. A) An example of a chromatogram obtained by HS-SPME-GCMS from the wild site of massif central labelled A. C1 = acetic acid, C2 = 1-pentanol, C2 =
hexanal, C3 = allyl isothiocyanate, C4 = heptanal, C5 = benzaldehyde, 2-methyl, C6 = benzaldehyde, C7 = hexanoic acid, C8 = limonene, C9 = linalool, C10 = 3- 
cyclohexen-1-ol, 4 methyl-1-(1-methylethyl)-; B) Individual factor map of the first two principal dimension (Dim1 – Dim 2) from the Multiple Factor Analysis (MFA) 
obtained from the Extracted-Ion Chromatogram (EIC) of all wild sites of massif central labelled A (in dark blue), C (in yellow), D (in grey), F (in red), G (in light blue) 
analyzed by GC–MS. C) Principal Component Analysis (PCA) obtained from the total ion current chromatogram (TIC) of all wild sites of massif central labelled A (in 
dark blue), C (in yellow), D (in grey), F (in red), G (in light blue) analyzed by GC–MS. PCA loading plot and score plot of the first two principal dimensions (Dim1 – 
Dim 2). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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excluded from this new experimental design. In Fig. 6A the coordinates 
of the two active groups (NIRS and GCMS) on the first dimension are 
almost identical. This means that their contribution to the first 

dimension is similar (38.9 %). Regarding the second dimension (14.1 
%), the fluo group has the highest contribution, indicating the highest 
contribution to the second dimension. Fig. 6B shows the score plot with 

Fig. 3. (continued).
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Fig. 4. Graphical representation of Multiple factors Analysis (MFA) of the first two principal dimensions (Dim1 – Dim 2). A) plots of the groups of variables. 
Correspondence of codes for group’s representation: site (supplementary variable), fluo = Fluorescence analysis, gcms = HS-SPME-GCMS analysis, nirs = Near Infra- 
Red Spectroscopy analysis. B) Graph of individuals with 95 % confidence ellipse of all wild sites of massif central labelled A (in dark blue), C (in yellow), D (in grey), 
F (in red), G (in light blue). C) Graph of partial individuals seen by each variable. Correspondence of codes: fluo = Fluorescence analysis, gcms = HS-SPME-GCMS 
analysis, nirs = Near Infra-Red Spectroscopy analysis. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.)

C. Lafarge et al.                                                                                                                                                                                                                                 Food Chemistry 464 (2025) 141564 

10 



Fig. 4. (continued).

Fig. 5. Graphical representation of Multiple factors Analysis (MFA) of the first two principal dimensions (Dim1 – Dim 2): Graph of individuals with 95 % confidence 
ellipse of all sites of massif central (cultivated growing practices (B (in yellow), E (in light blue)) and wild growing A (in dark blue), C (in grey), D (in red), F (in 
black), G (in brown)). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. Graphical representation of Multiple factors Analysis (MFA) of the first two principal dimensions (Dim1 – Dim 2). A) plots of the groups of variables. 
Correspondence of codes for group’s representation: all sites of Jura, all sites of Alpes and all sites of Pyrénées (supplementary variable), fluo = Fluorescence analysis, 
gcms = HS-SPME-GCMS analysis, nirs = Near Infra-Red Spectroscopy analysis. B) Factor map according to the massif: Massif P = Pyrénées with wild site I (in green), 
Massif A = Alpes with wild site J (in yellow), Massif J = Jura with wild site H (in yellow). (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.)
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95 % confidence ellipses. There is a clear separation between the mas
sifs. The first axis contrasts the massifs of Jura (on the right) and 
Pyrénées, Alpes (on the left). On the MFA factor map, it is interesting to 
note that the separation is made according to the type of mountain: 
Alpes and Pyrénées are separate but close, while Jura is on the opposite 
side. Both are high mountains, while Jura is classified as medium 
mountains. The data fusion clearly shows that (i) it is possible to sepa
rate the different gentian samples according to the type of mountain 
(high or medium) by using a wider range and (ii) a mountainous envi
ronment can confer chemical typicity on the plant. This result confirms 

the previous conclusions: the environmental factors (geography, climate 
and soil) must be taken into account when analyzing samples from the 
same massif in a small area. According to the literature, the following 
factors should also be taken into account: genetic variability, life cycle, 
age of the plant (Mustafa et al., 2016).

It is interesting to note that the volatile compounds present differ 
according to the type of massif (high or medium mountain) and can be 
very reliable fingerprints (Fig. 7). The main retention times (10.764 
heptane, 2,2,4,6,6-pentamethyl CAS N◦ [13475–82-6]) represented The 
Alpes and Pyrénées (high mountains). The common retention times 

Fig. 7. Principal Component Analysis (PCA) obtained from the total ion current chromatogram (TIC) of all wild sites of the studies: wild site H of Jura (in yellow), 
wild site I of Pyrénées (in grey), wild site J of Alpes (in blue) analyzed by GC–MS. PCA loading plot and score plot of the first two principal dimensions (Dim1 – Dim 
2). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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between Jura and Massif Central (middle mountains) are 1.11 min un
known molecule, 6.96 Allyl Isothiocyanate N◦ CAS [57–06-7], 11.97 
Nonane, 2,6-dimethyl- CAS N◦ [17302–28-2], 11.63 unknown molecule, 
6.475 Octane 4-methyl- CAS N◦ [2216-34-4], 13.37 Undecane 4,6- 
dimethyl- CAS N◦ [17312–82-2], 9.87 Nonane, 2-methyl- CAS N◦

[871–83-0], 11.83 Nonane, 2,5-dimethyl- CAS N◦ [017302–27-1], 11.16 
unknown molecule. To go deeper, Jura and Massif Central have volatile 
compounds specific to their sites. The retention times (2.62 unknown 
molecule, 9.71 Benzaldehyde CAS N◦ [100–52-7], 1.41 Formic acid CAS 
N◦ [64–18-6], 13.24 Decane, 4-ethyl- CAS N◦ [1636-44-8], 5.29 Hep
tane, 2,4-dimethyl- CAS N◦ [2213− 23− 2]) represented the Jura. The 
retention times (1.82 Acetic acid CAS N◦ [64–19-7], 4.76 Hexanal CAS 
N◦ [66–25-1], 14.97 1-(2,4-Dimethyl-furan-3-yl)-ethanone 61 CAS N◦

[032933–07-6], 15.060 unknown molecule, 2.812 Pentanal CAS N◦

[110–62-3]) represented only the massif central (Fig. 3). The results 
showed that the composition of the volatile fraction of Gentiana lutea is 
largely similar, but that each massif brings its own quite different 
specificity, its own volatile fingerprints.

4. Conclusion

In this study, the feasibility of combining information from HS- 
SPME-GCMS, NIRS and excitation-emission matrices of fluorescence 
was demonstrated using mid-level data fusion strategies to explore the 
geographical origin of Gentiana lutea roots over a wide area (between 
massifs). The results suggest that data fusion methods have the potential 
to be more effective in the quality of separation of studied sites of 
Gentiana lutea roots than individual decisions obtained from individual 
analytical tools. However, to ensure the geographical origin of Gentiana 
lutea root with these techniques at the massif scale, environmental fac
tors (climate, altitude and soil type) must be taken into account to better 
ensure gentian authenticity. Exploratory data analysis showed that 
gentian volatile compounds, assessed by GCMS, can be used to finger
print massif provenance. Gentian volatile markers were isolated and 
enabled to discriminate massif, and with a better consistency when data 
fusionning it with NIRS and fluorescence spectral data. Future work is 
needed on the effects of environmental factors and their interactions on 
the quality of Gentiana lutea, which could contribute to good growing 
practices and the conservation of wild populations. By highlighting the 
potential of mid-level data fusion techniques in this context, our 
research opens up avenues for further exploration to ensure the quality 
and conservation of other wild plant populations.
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Demšar, J., Curk, T., Erjavec, A., Gorup, Č., Hočevar, T., Milutinovič, M., Možina, M., 
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